Application of airborne LiDAR and thermal Infrared technologies for the assessment of human biometeorological conditions in urban areas
نویسندگان
چکیده
The rising global temperature contributes to a strong impact on urban thermal environment and outdoor thermal comfort. Although the existing satellite telemetry methods are convenient to display geographical information. The detail distributions of 3-dimentional radiation properties of the complex urban environment cannot be estimated accurately due to the low resolution and lack of vertical information. Hence, satellite telemetry methods cannot provide enough information concerning biometeorology conditions in urban areas. This research applies an innovative method to observe urban thermal environment by coupled airborne LiDAR and thermal Infrared (TIR) technique combined with synchronous climate measurement in ground level. Banqiao District of New Taipei City, one of the highest developed areas in Taiwan, is selected for the survey area. By combining the airborne LiDAR with thermal image sensors and surface measurements through GPS positioning system, the mean radiant temperature (Tmrt), estimated by various approaches, can be calculated and compared. The results indicated that Tmrt estimated by the LiDAR and TIR are highly in accordance with the value measured in the ground level. Furthermore, the Tmrt and Physiologically Equivalent Temperature (PET) are calculated and displayed as a distribution map. The hotspot of the survey area, which comprised high density building and high amount of anthropogenic heat, can be identified through the map. The analytical result reveal that the use of coupled LiDAR and TIR technology approach will be contributed to understand the urban human biometeorological conditions quickly and accurately. KET WORD:human biometeorology, LiDAR, thermal Infrared, Physiologically Equivalent Temperature
منابع مشابه
Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملسنجش اثرات سبزینگی گیاهی در تحولات فضایی شدت جزیره حرارتی سطح کلانشهر تهران با استفاده از تصاویر ماهوارهای LANDSAT8 و ASTER
The simplest definition of urbanization is that urbanization is the process of becoming urban. Urban climate is defined by specific climate conditions which differ from surrounding rural areas. Urban areas, for example, have higher temperatures than surrounding rural areas and weaker winds. Land Surface Temperature is an important phenomenon in global climate change. As the green house gases in...
متن کاملAssessment of human-biometeorological conditions in urban areas embedded in complex topographies – The example of Stuttgart
The region of Stuttgart, located in the south-western part of Germany, favors warm and humid climate accompanied by a low wind speed. Stuttgart lies in a basin-like sink and is surrounded by hills, a fact, which enforces the specific formation of these thermal and air quality conditions. The Urban Heat Island (UHI) of Stuttgart and its spatial distribution were assessed using thermal indices Ph...
متن کاملAssessment of the microclimatic and human comfort conditions in a complex urban environment: Modelling and measurements
Several complex thermal indices (e.g. Predicted Mean Vote and Physiological Equivalent Temperature) were developed in the last decades to describe and quantify the thermal environment of humans and the energy fluxes between body and environment. Compared to open spaces/landscapes the complex surface structure of urban areas creates an environment with special microclimatic characteristics, whic...
متن کامل